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In this study, the electromagnetic scattering from anisotropic inhomogeneous impedance cylinder of arbitrary shape is 

presented for both TM and TE plane wave illuminations. In the solution of scattering problem, scattered TE and TM fields 

are expressed as single layer potentials. Using the boundary condition and jump relations of single layer potential on the 

boundary, boundary integral equation is obtained and solved via Nyström method. Obtained results are compared with 

those obtained by analytical method for inhomogeneous anisotropic impedance cylinder and good agreements are 

observed.  
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1. Introduction 

 

The boundary conditions which electric and magnetic 

fields have to satisfy on the surfaces of object play an 

important role in scattering problems. One of these 

conditions is called as the impedance boundary condition 

(IBC) which gives a relation between tangential electric 

and magnetic field vectors on a given surface in terms of 

coefficient called as surface impedance. This kind of 

boundary condition are used for modelling coated 

surfaces, rough surfaces and used firstly by Leontovich [1] 

and Wait [2]. Generally, the surface impedance used for 

modelling of the scatterer is assumed to be constant scaler 

[3, 4]. However, when more accurate model of scatterer is 

considered, the surface impedance has to be a function of 

location such as modelling of inhomogeneous earth 

surface, even may be anisotropic to model anisotropic 

medium and corrugated surfaces. Therefore, most general 

IBC such as anisotropic and inhomogeneous IBC is to be 

considered in order to investigate the scattering from 

complicated material. Scattering from canonical structures 

whose surfaces satisfy inhomogeneous isotropic SIBC 

have been proposed in [5-7], scattering from 

inhomogeneous isotropic impedance cylinder of arbitrary 

shape has been investigated by Nyström method in [8] for 

nonzero surface impedance. Scattering from anisotropic 

inhomogeneous impedance circular cylinder has been 

presented in [9] by series expansion method. Scattering 

from anisotropic inhomogeneous impedance cylinder of 

arbitrary shape is solved by physical optics (PO) method 

in [10]. 

The main objective of this study is to describe method 

for the solution of the direct scattering problems with 

objects having arbitrary shape and anisotropic 

inhomogeneous impedance boundary conditions for both 

TE and TM plane wave illuminations. Proposed method is 

based on an integral representation of the scattered TM 

and TE fields through single layer potential that leads to a 

boundary integral equation through the jump relations of 

single layer potentials. This integral equation is well-posed 

and can be solved numerically through a Nyström method. 

In Section 2, the scattering problem is formulated and 

solved. In Section 3, some examples are given. We also 

compare the results with those obtained by analytical 

technique [9] available for anisotropic inhomogeneous 

impedance cylinder. Both results match accurately. 

Finally, conclusions and concluding remarks are given in 

Section 4. A time factor  tiexp  is assumed and 

omitted throughout the paper. 

 

 

2. Formulation and solution of the problem  

 

The geometry of the considered scattering problem 

and parameters employed in the formulation are shown in 

Fig. 1. The object is defined by its boundary D  and 

inhomogeneous anisotropic surface impedance 

DrrZ 


),( . The exterior environment is taken to be 

medium with permittivity , permeability   and lossless. 
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Fig. 1. The geometry of the problem 
 

 

Cylinder is illuminated by monochromatic plane 

wave, whose electric field is along z axis that corresponds 

to TM illumination of the form as, 
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or whose magnetic field is along the z axis that 

corresponds to TE illumination of the form as, 
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where  /0 Z  is characteristic impedance of 

exterior medium and yxi uuk ˆsinˆcosˆ
00    is the 

propagation direction of incident field with incidence 

angle 0  and, k  is the wave number of exterior 

region. Due to the homogeneity of the problem with 

respect the z-axis, partial derivative with respect to z is 

zero. Since boundary condition is anisotropic, total field 

contains both TM ( 0,0  zz HE ) and TE 

( 0,0  zz HE ) fields. 

The TM and TE fields satisfy the reduced Helmholtz 

equation as  

 

 02  zz EkE                 (3) 

02  zz HkH  

 

and the inhomogeneous anisotropic IBC [9,10], 
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and radiation conditions as 
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where v̂  is unit normal vector on D , and )(rZ  is 

inhomogeneous impedance dyadic expressed as, 
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where )(ˆˆ)(ˆ rvurt z


  is tangential unit vector on D  

as depicted Fig. 1. As seen from (7), this is most general 

IBC and all kind of boundary condition discussed 

previously in literature can be expressed by appropriate 

choice of impedance functions. For example, if 0)( rZ


, 

boundary condition described in (7) reduces to perfect 

electric conductor (PEC) condition. 

If  ttzztzzt ZZandZZ ,0 , (7) reduces to 

perfect magnetic conductor (PMC).  

If DrrZrZandZZ ttzztzzt 


,0)()(0 , (7) 

reduces isotropic inhomogeneous IBC which is discussed 

in [5,8].  

Let’s represent the fields on the boundary D  as  
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Substituting (8) and (9) into (4), one obtains boundary 

conditions as 
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By using Maxwell equations, one can obtain as, 
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Substituting (12) and (13) into (8) and (9), one obtains 
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Since 
s

zE  and 
s

zH  satisfy Helmholtz equation and 

radiation condition, they can be expressed by single layer 

potential on the closed exterior of D  respectively as [11, 

12] 
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where S  is single layer integral operator  and   are 

unknown densities and ),( rrG 


is Green’s function of 

exterior medium given by 
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where (.))1(

0H  is the Hankel function of the first kind and 

of order zero. Representation (16) and (17) can be used to 

evaluate fields and its normal derivative on boundary D  

by using jump relation of single layer potential [11, 12] as  
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substituting (19),(20),(21) and (22) into (14) and (15), boundary integral equation is obtained as 
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where )(rf


 and )(rg
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 are functions depends on illumination. For TM illumination case, 
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For TE illumination case, 

 

DreZrZrgeZrZkrvrf
rkik

zt

rkik

tti
ii 

 

,)/)(()(,)/)(ˆ).(ˆ()(
.ˆ

0

.ˆ

0
    (26) 

 
 

Let’s represent the boundary and surface impedance 

of the object D  by parametric equations given by 
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and unit normal vector on the boundary D  can be 

defined as 
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By using the parametrization in (27), Integral 

equations (23) and (24) can be written more compact 

forms respectively as 
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where 4321 ,,, LLLL  are Kernels of the integral operators given by 
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In order to implement Nyström method, Kernel of the integrals are decomposed as 
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where 0.57721...C is Euler constant. If the boundary 

curve and the impedance functions both are analytic, then 
)1(

nL  and 4,3,2,1,)2( nLn
are also analytic. Therefore, 
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and the trapezoidal rule 
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Nyström method is to use approximations given by (48) 

and (50) that lead to approximating the integral equation 

(29) and (30) by solving the linear system 
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for approximations 
)( N

p  and 
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p  to the values  

)( pt  and  )( pt  respectively of the solution at the 

grid points. This Nyström method can be shown to 

converge for continuous 
)1(

nL  and 4,3,2,1,)2( nLn , i.e., 

for twice continuously differentiable boundaries and 

continuous impedance functions. Moreover, for the case of 

analytic boundary curves and impedances it enjoys an 

exponential convergence rate, i.e., doubling the number of 

grid points doubles the number of correct digits in the 

approximation. For more details on the Nyström method 

we refer the readers to [11, 12]. 

Once the boundary integral equations (29) and (30) 

are solved the near and far fields of the TM and TE 

scattered waves can be calculated through (19) and (20) 

respectively. Let’s call TM and TE fields as vertically (V) 

and horizontally (H) waves respectively. Polarimetry 

scattering width VHbVHaab ,;,,  is related to 

ratio of a  polarized scattered power to b polarized 

incident power and defined by 

 

VHbVHa
E

E

b

a

ab ,;,,
),(

2lim)(
2

2









   (53) 
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3. Numerical results 
 

The proposed procedure has been applied to two 

illustrative examples. In all examples, wave number of 

exterior medium and incidence angle are chosen as 1k  

and 
0

0 0  respectively. Integral equations (51) and (52) 

are solved for 50N . The first example is dedicated to 

validate proposed integral equation method for TM 

illumination. For this purpose, scattering from anisotropic 

inhomogeneous impedance circular cylinder whose 

analytical solution is available in [9] is considered. 

Obtained results are compared with those obtained by 

analytical method in [9] and good agreements are 

observed. In the second example, electromagnetic 

scattering from kite shaped anisotropic inhomogeneous 

impedance cylinder is solved by proposed method. 

 

Case 1 

 

Scattering from anisotropic inhomogeneous 

impedance circular cylinder with radius 1m is considered 

for TM incident case. Parameterization of boundary and 

anisotropic surface impedances are given respectively as  

 

  2,0),sin,(cos)(  ttttrD  and  

)cos()1(100)( titZzz  , )2sin()21(50)( titZ zt   

)sin1(100)(),2cos()2(50)( titZtitZ tttz  . 

 2,0t . 

 

Since the incident field is TM wave, TM and TE 

scattered widths are called as VV  and HV , depicted in 

Fig. 2 and Fig. 3 respectively. Obtained results are 

compared with those obtained by analytical method in [9]. 

As seen from Fig. 2 and Fig. 3, good agreements are 

observed. 
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Fig. 2. Scattering width VV  of the circular  

cylinder for case 1  
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Fig. 3. Scattering width HV  of the circular  

cylinder for case 1        
 

   

Case 2 

 

Proposed method is applied for solution of scattering 

from anisotropic inhomogeneous impedance kite shaped 

cylinder for TM and TE incident cases. Parametric 

representation of boundary and anisotropic surface 

impedances are given respectively as 

  2,0),sin5.1,65.0)2cos(65.0(cos)(  tttttrD

 and,  

 

)3cos()43(20)( titZzz  , )2sin()2(50)( ttitZzt  , 

,cos)sin(30)(),cos()1(100)( ttittZttitZ tttz    

 

 2,0t . Polarimetry scattering widths 
HVVHVV  ,,  

and 
HH based on definition (53) are obtained. VV  and 

HV  are depicted in Fig. 4. VH  and 
HH  are depicted 

in Fig. 5. 
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Fig. 4. Polarimetry scattering widths VV and HV  

of the kite shaped object for case 2 
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Fig. 5. Polarimetry scattering widths VH and 
HH  

of the kite shaped object for case 2 

 

 

4. Conclusions 

 

The surface impedance of scattering object can be a 

function of location and anisotropic depending on the 

geometrical and physical properties of the scattering 

object. The problems involving anisotropic 

inhomogeneous IBC are important from both 

mathematical and physical points of view. These problems 

have practical applications such as antenna design and 

radar cross section (RCS) reduction for specific purposes. 

By choosing appropriate anisotropic surface impedance, a 

certain radiation and polarization patterns of antenna or 

minimize RCS of the target for particular direction can be 

obtained.  

In this study, electromagnetic scattering from 

anisotropic inhomogeneous impedance cylinder of 

arbitrary shape is considered by integral equations which 

are solved by numerical effective Nyström method for 

both TM and TE illumination. For this reason, the 

scattered TM and TE fields are represented by single-layer 

potentials firstly. Using the jump relations of single layer 

potentials and its normal derivatives on the boundary, 

boundary integral equations are obtained and solved by 

numerical effective Nyström method which has 

exponential convergence property.  Obtained results are 

compared with those obtained by analytical method for 

circular cylinder with anisotropic inhomogeneous IBC and 

good agreements are observed. 
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